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Abstract. In a roughening process, the growth exponent β describes how the roughness w grows with
the time t: w ∼ tβ. We determine the exponent β of a growth process generated by the spatiotemporal
patterns of the one-dimensional Domany-Kinzel cellular automaton. The values obtained for β show a
cusp at the frozen/active transition which permits determination of the transition line. The β value at the
transition depends on the scheme used: symmetric (β ' 0.83) or non-symmetric (β ' 0.61). Using damage
spreading ideas, we also determine the active/chaotic transition line; this line depends on how the replicas
are updated.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics
– 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The one-dimensional Domany-Kinzel cellular automaton
(DKCA) is a totally discrete systems – temporally, spa-
tially and in numbers of states – with several applica-
tions in physics, chemistry, biology, computer science, etc.
The DKCA phase diagram was originally proposed by
Domany and Kinzel [1] who showed the existence of two
phases: an active phase and a frozen one. A more detailed
study, using numerical simulation, was present by Martins
et al. [2], where a new phase in the active region – a
chaotic phase – was discovered using the damage spread-
ing technique. Further, Zebende and Penna [3] used the
gradient method to determine the phase boundaries with
high precision. Recently, Tomé [4] explored some details
of the joint evolution of two DKCA. She considered the
problem of simultaneous updating of two replicas using
pseudo-random numbers; two prescriptions were presented
for the joint evolution: one used by Martins et al. [2]
and another introduced by Kohring and Schreckenberg [5].
Hinrichsen et al. [6] discovered a third phase in the DKCA
diagram, using a thorough analysis of the damage spread-
ing technique to split the active phase into three different
regions: a chaotic region, where the damage spreads for
every member of this family of dynamic procedures; an
active region, where the damage heals for every member of
this family, and another active region, where the damage
spreads for a subset of the possible dynamic procedures
and heals for the others. This new phase was obtained with
a prescription that updates the replicas using the minimal
correlations.
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In 1997, de Sales et al. [7] showed that the roughness
exponent α can be used to classify the deterministic cel-
lular automata (CA) described by Wolfram [8]. More re-
cently [9], they showed that this exponent also can be used
to detect the frozen/active transition in DKCA directly
from the automata, without reference to order parame-
ters or response functions. This method also can be used
to detect phase transitions in another kind of model, such
as the Potts model [10]. Beyond the roughness exponent α,
the growth exponent β is another critical exponent used
to describe various roughening processes in the surface
growth context [11,12].

In this work, we introduce the growth exponent
method to identify phase transitions. We apply this
method to the one-dimensional DKCA to detect the phase
transitions directly from the automata and build the
DKCA phase diagram. To obtain self-affine rough profiles,
we use the accumulation method to perform a mapping
to the solid-on-solid (SOS) model, and measure the time
evolution of the roughness of the interface to obtain the
exponent β. In the frozen/active transition, the exponent
β has a maximum, and two schemes are used to update
the system [13]: a symmetric scheme, that corresponds to
a triangular lattice, and a nonsymmetric scheme. In the
symmetric scheme we obtain β ' 0.83, consistent with
the directed percolation (DP) prediction; but in the non-
symmetric scheme, β ' 0.61, an unusual value that was
not expected. It is expected [13], rather, to find the same
value for β in the two schemes.

Very recently, a quite similar method was used by
Lauritsen and Alava [14], to study the Edwards-Wilkinson
equation with columnar noise, and by Dickman [15], to
study the contact process.
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Fig. 1. Schemes used to update the systems.

This studies do not consider damage spreading, and
cannot detect the chaotic/non-chaotic transition. To ev-
idence this transition, we use the damage spreading
ideas [16]: the difference between two replicas, which
evolve with same dynamics, is used to perform the same
SOS mapping as mentioned above, via the accumulation
method. We use three different prescriptions for the simul-
taneous updating of the replicas and obtain three different
transition lines.

In Section 2, we introduce the growth expo-
nent method and show the results obtained for the
frozen/active transition. The damage spreading ideas and
the chaotic/non-chaotic transition are presented in the
Section 3. Finally, we let to the Section 4 our conclusions
and acknowledgments.

2 Frozen-active transition

The DKCA consists of a linear chain of L sites (i =
1, 2, ..., L), with periodic boundary conditions, where each
site has two possible states σ = 0, 1 (frozen, active). The
state of the system at time t is given by the set {σi}. In
contrast to the deterministic CA studied by Wolfram [8],
the DKCA is probabilistic, in the sense that the rules that
update the system are given by conditional probabilities,
P (σi−1(t), σi+1(t)|σi(t + 1)) (in the symmetric scheme).
That is, the state of a given site in time (t + 1) depends,
in a probabilistic fashion, upon the state of the two near-
est neighbours at time t. In the DKCA, the conditional
probabilities in the isotropic case are

P (0, 1|1) = P (1, 0|1) = p1,

P (1, 1|1) = p2,

P (0, 0|1) = 0.

Obviously,

P (σi−1, σi+1|0) = 1− P (σi−1, σi+1|1).

In the nonsymmetric scheme, the state of a given site in
time (t + 1) depends upon the state of itself and of the
one nearest neighbour, both at time t. Then, the condi-
tional probabilities are given by P (σi−1(t), σi(t)|σi(t+1)),
and P (σi−1, σi|0) = 1 − P (σi−1, σi|1). The values of the
conditional probabilities are the same in both schemes. In
Figure 1 we reproduce a representation of these schemes.

Depending on the values of the parameters (p1, p2), the
asymptotic (t→∞) state of the system is either a frozen

Fig. 2. Evolution of profiles generated by the accumulation
method. Above: profiles generated in the symmetric scheme
on a lattice with L = 1 000. Below: profiles generated in the
nonsymmetric scheme, L = 1 000. Both figures have the same
initial profile and same sequence of random noise, and the pro-
files were taken at the same instants of time in both schemes.
Each profile was taken after 1 000 time steps.

state, with all sites in state 0, or has a finite fraction of
sites with value 1, the active state. This is a second order
phase transition, characterized by universal critical expo-
nents [1].

To study the phase diagram of the DKCA, we use the
accumulation method, utilized by Sales et al. [9], to obtain
profiles in analogy with solid-on-solid (SOS) models in (1+
1) dimensions. A similar method was proposed by Kremer
and Wolf [17] to measure the width of an interface in the
presence of overhangs and holes. This method consists in
accumulating (or summing) all the values assumed by the
variables σi(t) during a given number t of successive time
steps

hi(t) =
t∑

τ=0

σi(τ). (1)

The differences between the schemes become explicit at
this point. In the Figure 2, we can observe several profiles
at criticality in both schemes, generated after we apply the
accumulation method. It is evident that different schemes
lead to completely different profiles.

Thus, we obtain growth processes, the nature of whose
correlations can be investigated through the analysis of the
roughness w(L, t) [11]. The roughness is defined by

w2(L, t) =
1
L

L∑
i=1

(
hi(t)− h(t)

)2
, (2)

where h(t) is the mean value of hi(t) at time t. In fact,
in order to consider the initial roughness of the profiles,
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Fig. 3. Evolution of the fluctuation in roughness δw(L, t)
with time t in a log-log plot, for p2 = 0.95 and five differ-
ent values of p1. We use L = 10 000 and 50 samples. Note that
the frozen/active transition occurs when the roughness grows
indefinitely (p1 = 0.595 - filled symbols).

we work with the fluctuation in roughness [18]

δw(L, t) =
√
w2(L, t)− w2(L, 0). (3)

We expect that the behaviour of δw(L, t) has the form

δw(L, t) = Lαf

(
t

Lz

)
, (4)

where f(u) is a universal scaling function, α is the rough-
ness exponent, z = (α/β) is the dynamic exponent and
β is the growth exponent. The function f(u) = const.
at large times (t � Lz) and f(u) ∼ uβ at short times
(t� Lz). So, at short times, we expect that δw(L, t) ∼ tβ
and can measure β calculating the slope of the log-log plot
of δw(L, t) versus t. The growth exponent denotes how the
profile roughness grows with time: β = 1/2 means that the
profile is not correlated, and is analogous to that gener-
ated by random deposition [11]; if β > 1/2, the profile
tends to grow more at the tips, which causes the rough-
ness increases faster, in contrast to β < 1/2, where the val-
leys grows quickly and make the roughness increase more
slowly.

Typical results for the evolution of the roughness are
shown in Figure 3. These results correspond to averages
over 50 random initial configurations taken after 100 000
time steps in DKCA containing L = 10 000 sites. Each
curve in this graph (101 points) takes approximately one
hour of CPU time on a Digital 500au workstation. We can
observe that the roughness reaches the steady state in the
frozen phase and grows indefinitely in the active phase.
The values of β at the transition are shown in Figure 4,
for both schemes. The exponent β is measured over more
than three decades (10 < t < 100 000 and 0.1 < δw <
1 000). Note that β shows a maximum at the transition
and tends to the value β = 1/2 quickly after the transition,
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Fig. 4. Evolution of growth exponent β as a function of p1, in
the frozen/active transition, in the two updating schemes; the
system has L = 10 000. Five different values of p2 are shown.
The maximum of β indicates the transition. The symmetric
scheme is represented by filled symbols and the nonsymmetric
scheme by open symbols. The lines are to guide the eye.

remaining at this value until p1 = 1. The value of the β
exponent at the transition depends of the scheme utilized
in the DKCA. Nagy et al. [13] describe two schemes: a
symmetric one, where the even (odd) sites are updated at
even (odd) times; and a nonsymmetric one, where all sites
are updated at each time step, but the neighbours of site
(i, t + 1) are (i − 1, t) and (i, t). The symmetric scheme
has been used in most previous studies of the model. In
the symmetric scheme, we find β = 0.81(2), compatible
with the universality class of directed percolation (DP)
(β ' 0.84) [15]. In the nonsymmetric scheme, we find β =
0.61(2), clearly different from the DP value.

A finite size scaling analysis was made for the exponent
β and shows that the width of the peak vanishes when the
size of system goes to infinity. The value of the exponent
β when the system size goes to infinity approaches β '
0.83(2) at the frozen/active transition in the symmetric
scheme, and is valid for all values of p2 6= 1.

On the line p2 = 1, the system is mapped onto the two-
dimensional Ising model [19], and the β value is significant
greater in the two schemes: β = 0.99(1) in the symmetric,
and β = 0.75(1) in the nonsymmetric. The value in the
symmetric scheme agrees with the literature [6], which
predicts that all points on the phase boundary, except
the line p2 = 1, are characterized by directed percola-
tion (DP) exponents. On the line p2 = 1, the model has
been solved exactly, and can be mapped onto the two-
dimensional Ising model universality class, which leads to
the value β = 1 [1].

The value β > 1/2 denotes the trend of the sys-
tem to grow faster at the tips which can be understood
as a preservation of active sites. At the transition, few
sites remain active, which causes hi(t) to grow only near
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active sites, contributing to an increase in the rough-
ness. In the active phase, many sites are active, but un-
correlated, randomly increasing the height hi(t), so that
β = 1/2.

The roughness exponent is defined only in the frozen
phase because, in the active phase, the steady state is not
reached. We calculate the Hurst exponent, H, very close
to the transition and find, in the symmetric scheme, H =
0.61(2). As noted by de Sales et al. [9] , there is a maximum
in the H exponent, marking the phase transition. In the
nonsymmetric scheme, the value of H at the transition is
much smaller, α ' 0.25, and the maximum is not very
clear.

3 Active-chaotic transition

Martins et al. [2] used the damage spreading technique to
show that the active phase of DKCA can be split into two
phases, chaotic and non-chaotic. The order parameter of
this transition is the difference between two replicas with
slightly different initial configurations. They let the sys-
tem evolve until it attains equilibrium, and then a replica
of the automaton is created with some sites altered (dam-
age). So the two replicas, one with states σi(t) the another
with states %i(t), evolve with the same dynamics, and the
difference between the automata

Γi(t) = |σi(t)− %i(t)|,

is measured. The fraction of sites in replica system that
differ from their counterpart in the original system is
called the Hamming distance, defined as

DH(t) =
1
L

∑
i

Γi(t).

The stationary Hamming distance is null in the non-
chaotic phase and positive in the chaotic phase.

To obtain the chaotic/non-chaotic boundary, we use
a slightly different method, where the difference between
the two automata is used to perform the same mapping
to a SOS model as we did in the accumulation method

hi(t) =
t∑

τ=0

Γi(τ). (5)

Thus, the profile generated by the difference of the two
replicas behaves exactly as the profiles generated in the
frozen/active boundary: the roughness reaches a station-
ary value in the non-chaotic phase and grows indefinitely
in the chaotic phase. This behaviour can be understood
if we note that the difference between the replicas van-
ishes in the non-chaotic phase, which implies no contribu-
tion to the height hi(t), and is positive in chaotic phase,
which implies in a persistent contribution to the height.
The β exponent again passes through a maximum at the
chaotic/non-chaotic transition, and its value depends on
the scheme utilized.
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Fig. 5. Evolution of growth exponent β as a function of p1,
using damage spreading ideas to locate the chaotic/non-chaotic
transition. The system has L = 10 000. Four different values of
p2 are shown, for prescription A.

Figure 5 shows β for the chaotic/non-chaotic transi-
tions, in the symmetric scheme. To obtain this figure, we
use an automaton with L = 10 000 and let it evolve for
104 time steps, at which time we create a replica of the
system with an “initial damage”, by flipping a fraction of
the sites (∼ 10%). Then the replicas evolve with the same
dynamics during the 105 time steps, and the difference be-
tween them is measured as a function of time. An average
over 50 realizations of initial damage was used.

We can locate the chaotic/non-chaotic phase transi-
tion, with the damage method, either waiting or not wait-
ing for the original system to reach the steady state (first
104 time steps). The only difference we note is that the
value for the exponent β, at the frozen/active transition,
is more precise and the cusp is more pronounced if we wait
the original to reach the steady state. For the chaotic/non-
chaotic transition we obtain the same values with the two
procedures, considering the statistical fluctuations.

At this point we have to emphasize the question of
the dynamics of joint evolution of two CA’s. Tomé [4]
studied this joint evolution and showed that the CA’s
can evolve following two different prescriptions: prescrip-
tion A, used by Martins et al. [2], which corresponds to
updating both automata always using the same random
number, and prescription B, introduced by Kohring and
Schreckenberg [5], which implies that one must sometimes
use two different random numbers (z1 and z2) to up-
date the original and the replica. The later occurs when
we have (σi−1 + σi+1) = 1 and (%i−1 + %i+1) = 2, or
vice-versa. We make simulations using these two prescrip-
tions and verify that there are significant differences in the
chaotic/non-chaotic boundary of the DKCA p2−p1 phase
diagram, as shown in Figure 6. These differences were dis-
covered by Bagnoli [20], who studied the damage spread-
ing transition in the DKCA using a mean-field approx-
imation; this work confirms his prediction numerically.
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Fig. 6. DKCA p1− p2 phase diagram obtained via the growth
exponent method. Note that the three prescriptions yield dif-
ferent boundaries for the chaotic/non-chaotic transition. At
p2 = 0 we have p1c = 0.809(1) and at p1 = 1 we have
p2c = 0.3135(10), with all boundaries meeting at these points.

The frozen/active transition line and the chaotic/non-
chaotic transition line obtained with prescription A are
very close to the the phase diagram found by Zebende
and Penna [3].

In this phase diagram we also present a third prescrip-
tion, C, in which three random numbers, z1, z2 and z3,
are used to update the system. Defining

Ui = σi−1 + 2σi+1

and

Vi = %i−1 + 2%i+1,

we have the following cases:
• if Ui = Vi → we use the same random number (z1) to
update the original and the replica;
• if Ui = 1 and Vi = 2 (or vice-versa) → we use z1 for the
original and z2 for the replica;
• if Ui = 1 and Vi = 3 (or vice-versa) → we use z1 for the
original and z3 for the replica.
• if Ui = 2 and Vi = 3 (or vice-versa) → we use z2 for the
original and z3 for the replica.

To this prescription, the boundary is slighting above
that of prescription B.

The difference between the phase boundaries appears
to be due the different prescriptions for updating the
systems in the damage spreading technique employed to
detect the chaotic/non-chaotic transition: prescription A
corresponds to maximal correlations between the random
numbers; prescription B, to lower correlations, and pre-
scription C to minimal correlations [6, 20]. We perform
simulations using the third prescription in an attempt to
reveal the third phase transition, reported by Hinrichsen
et al. [6], but are unable to detect that transition using
prescription C, which is the prescription with minimal
correlations.

4 Conclusions

In this work we propose a new method to obtain the
phase diagram of the DKCA using the growth exponent β,
and detect the frozen/active boundary. At the transition,
the values of the exponent β depend on the scheme used to
update the system: β = 0.83(2) for the symmetric scheme,
and β = 0.61(2) to the nonsymmetric scheme. Next, we
extend this method, using damage spreading, to obtain the
chaotic/non-chaotic boundary. Finally, we study three dif-
ferent prescriptions for the joint evolution of two DKCA’s
and construct the phase diagram, shown in Figure 6.

The advantage of this method to determine the phase
diagram of the DKCA is that we do not need to wait for
the system to reach the steady state, as in the methods
used by Martins et al. [2] and Zebende and Penna [3],
thereby economizing computation time. In addition, the
growth exponent method can detect the chaotic/non-
chaotic boundary much more clearly than the usual Ham-
ming distance, which presents large fluctuations at the
transition. This method can also be employed to detect
phase transitions in other models where the accumulation
process can be used [10].
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